On the water level measurements in the Gulf of Riga during 1961–2016

Rain Männikus

Tarmo Soomere Nadezhda Kudryavtseva

Wave Engineering Laboratory at Tallinn University of Technology

Helsingor, June 2018

Outline of the presentation

- > Why to analyse components of water levels (WL)?
- Study area with observation stations
- Description of the data
- Quality analysis of data
- Previous study with modelled WL
- Distributions of WL components
- Comparing results with modelled ones
- Conclusion and further work

Motivation for the study of WL

- Water level (WL) is core input for coastal management and engineering projects
 - Means, <u>extremes</u>, quantiles, trends, <u>distributions</u>
- Main contributors to total WL:
 - Tides, storm surges (low atmospheric and winddriven surges), wave-induced set-up, local effects
 - Usually <u>assumed to be independent</u>
 - Hence, analyse components separately
 - Most are well studied in Baltic Sea
- What about specific reaction to WL from sub-basins?
- Latvian WL observations used <u>1st time</u> here

Study area

Gulf of Riga (GoR)

- 130 x 140 km
- Surface area 17913 km²
- Volume 406 km³
- Average depth 23 m

Similarly with Baltic Sea:

Temporary increase in water volume may lead to devastating results

Description of observed data

- Observed data mainly from Latvian Environment, Geology and Meteorology Centre
- Supplemented with data of Pärnu (Estonia)

▶ 1961–2016.

- Mostly hourly data.
 - Gaps and missing values (some stations recorded 2–4 times a day).

Focusing on data from Liepaja (L), Daugavgriva (D) and Pärnu (P).

- > Exclude gaps from all time-series (1961–2016).
- Correlation for L and D/P ==> 0,845/0,890.
- Small uncertainties: L=1,2 cm, D=0,7 cm, P=1,6 cm.

Previous study with modelled WL data

Soomere, Eelsalu, Kurkin, Rybin. 2015. Separation of the Baltic Sea water level into daily and multi-weekly components. Continental Shelf Research 103.

Modelled WL values (1961–2005)

- Rossby Centre Ocean (RCO) Model (SMHI)
- Grid cell (2x2 nm) away from coast in the depth range of 6–30 m.

Used running averaging technique on WL time-series to extract components and their distributions

Components of water levels (WL)

Running average technique for WL time-series

TOTAL WATER LEVEL (WL)	All factors and components included
Weekly-scale average (WA)	Shows fluctuations in the Baltic Sea water volume
Residual (Re = WL–WA)	Proxy for the local wind-driven surge (e.g. Soomere <i>et al.</i> , 2015)

Distribution of WL values

WL	Approx. Gaussian
WA	Approx. Gaussian
Re	Exponential distribution?

- For residual: shape of distr. and outliers depend on averaging interval t_A.
- > Search for suitable t_A .

$$> f(t_A) = \frac{0}{\lambda^2 + \lambda x + c}$$

Residual reduces to exp distribution.

Averaging intervals

Tallinn	8,25 days
Liepaja	10 days
Daugavgriva	9,5 days
Pärnu	9 days

- Possible to quantify the probability of high and low local storm surges
- > Scale parameter -1/ λ

Comparison of $-1/\lambda$

Location	Measured WL		Modelled WL	
	Left	Right	Left	Right
Liepaja	-5,93	4,15	-2,82,5	4,24,6
Daugavgriva	-7,47	6,62	-5,04,3	6,06,3
Pärnu	-8,49	7,50	-5,04,3	6,06,3

Higher values mean higher water levels. Lower vice versa.

Modelled WL values (1961–2005)

- Mismatch probably caused by location differences and time period
- Sensitive to length of regression line

- Several occasions WL in GoR was higher or lower than in the Baltic Sea
 - Systematic increase in the water volume in GoR?
 - Small cross-sections of Irbe and Suur Strait

Conclusion and further work

Observed WL time-series first time used in this study

(Hourly) data of 1961-2016 has some gaps and errors, but suitable for analysis

Idea of the study:

- Total water level = weekly average + residual
- \geq Distribution of residual turns to exp with suitable t_A.
- Possible to quantify the probability of high and low local storm surges

Further work:

- Another component in GoR?
- Duration of high/low waters

Thank you for your attention!

